Operasi Matriks
Operasi Dalam Matriks
Dua buah matriks dikatakan sama apabila matriks-matriks tersebut mempunyai ordo yang sama dan setiap elemen yang seletak sama.
Jika A dan B adalah matriks yang mempunyai ordo sama, maka penjumlahan dari A + B adalah matriks hasil dari penjumlahan elemen A dan B yang seletak, begitu pula dengan hasil selisihnya. Matriks yang mempunyai ordo berbeda tidak dapat dijumlahkan atau dikurangkan.
Jumlah dari k buah matriks A adalah suatu matriks yang berordo sama dengan A dan besar tiap elemennya adalah k kali elemen A yang seletak. Didefinisikan: Jika k sebarang skalar maka kA = A k adalah matriks yang diperoleh dari A dengan cara mengalikan setiap elemennya dengan k. Negatif dari A atau -A adalah matriks yang diperoleh dari A dengan cara mengalikan semua elemennya dengan -1. Untuk setiap A berlaku A + (-A) = 0.
Hukum yang berlaku dalam penjumlahan dan pengurangan matriks :
- a. A + B = B + A
- b. A + ( B + C ) = ( A + B ) + C
- c. k ( A + B ) = kA + kB = ( A + B ) k , k = skalar
Hasil kali matriks A yang ber-ordo m x p dengan matriks B yang berordo p x n dapat dituliskan sebagi matriks C = [ cij ] berordo m x n dimana cij = ai1 b1j + ai2 b2j + ... + aip bpj
Matriks Balikan (Invers)
JIka A dan B matriks bujur sangkar sedemikian rupa sehingga A B = B A = I , maka B disebut balikan atau invers dari A dan dapat dituliskan
( B sama dengan invers A ). Matriks B juga mempunyai invers yaitu A maka dapat dituliskan
. Jika tidak ditemukan matriks B, maka A dikatakan matriks tunggal (singular). Jika matriks B dan C adalah invers dari A maka B = C.


Matriks A =
dapat di-invers apabila ad - bc ≠ 0

Dengan Rumus =

Apabila A dan B adalah matriks seordo dan memiliki balikan maka AB dapat di-invers dan

Contoh 1:
Matriks
-
- A =
dan B =
- A =
-
- AB =
=
= I (matriks identitas)
- AB =
-
- BA =
=
= I (matriks identitas)
- BA =
Maka dapat dituliskan bahwa

Contoh 2:
Matriks
-
- A =
dan B =
- A =
-
- AB =
=
- AB =
-
- BA =
=
- BA =
Karena AB ≠ BA ≠ I maka matriks A dan matriks B disebut matriks tunggal.
Contoh 3:
Matriks
-
- A =
- A =
Tentukan Nilai dari A-1
Jawab:

Contoh 4:
Matriks
-
- A =
, B =
, AB =
- A =
Dengan menggunakan rumus, maka didapatkan
-
,
,
Maka
-
=
Transpose Matriks
Yang dimaksud dengan Transpose dari suatu matriks adalah mengubah komponen-komponen dalam matriks, dari yang baris menjadi kolom, dan yang kolom di ubah menjadi baris.

Contoh:
Matriks
-
- A =
ditranspose menjadi AT = 
Matriks
-
- B =
ditranspose menjadi BT = 
Beberapa Operasi Transpose sebagai berikut:
-
- 1.

- 2.
dan 
- 3.
dimana k adalah skalar - 4.

- A =
ditranspose menjadi AT =
Matriks
- B =
ditranspose menjadi BT =
Beberapa Operasi Transpose sebagai berikut:
- 1.
- 2.
dan
- 3.
dimana k adalah skalar
- 4.
0 komentar
Posting Komentar